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Abstract
A theoretical scheme, based on a probabilistic generalization of Hamilton’s
principle, is elaborated to obtain a unified description of more general
dynamical behaviors determined both from a Lagrangian function and by
mechanisms not contemplated by this function. Within this scheme, quantum
mechanics, classical field theory and a quantum theory for scalar fields are
discussed. As a by-product of the probabilistic scheme for classical field
theory, the equations of the De Donder–Weyl theory for multi-dimensional
variational problems are recovered.

PACS numbers: 11.10.Ef, 12.90.+b, 02.30.Xx, 02.50.Cw

1. Introduction

The main purpose of this paper is to explore the possibility of reconsidering the problem of the
relativistic quantum theory of fields from a different point of view. We will focus on standard
fields with no reference to strings.

Let us start from the following general remarks. Suppose we have a classical isolated
physical system described by a set of real spacetime functions (fields) qi(x)(i = 1, 2, . . . , n),

x = (x0, x1, x2, x3) ∈ M , the spacetime manifold, with the metric tensor gμν =
diag(1,−1,−1,−1). If a Lagrangian (density)

L = L(qi(x), ∂μqi(x))

(
∂μ = ∂

∂xμ
, μ = 0, 1, 2, 3

)
(1)

is associated with the system then, as is well known, the field equations determining the
functions qi(x) can be obtained through a variational principle, that is, by requiring that the
action

Ac =
∫

V

L(qi(x), ∂μqi(x)) dx (dx = dx0 dx1 dx2 dx3) (2)
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be stationary under variations of qi(x) vanishing at the boundary of V, a domain of M. Then
one obtains the partial differential (Euler–Lagrange) equations

∂μ

(
L

∂(∂μqi(x))

)
− ∂L

∂qi(x)
= 0 (i = 1, 2, . . . , n). (3)

In the case of a classical mechanical system with a finite number of degrees of freedom
(MSF), a useful and relevant tool for the study of its dynamical properties is given by the
Hamiltonian approach. There is essentially one Hamiltonian formulation associated with a
given Lagrangian. This formulation has a fundamental role in the transition from classical
to quantum theory if this transition is performed on the basis of the standard canonical
quantization rules (SCQR). But it is also very relevant and effective in conjunction with
the Hamilton–Jacobi theory and general aspects of the one-dimensional variational problem
involved in the case of an MSF [1–3].

On the other hand, in the case of continuous systems described by fields, we do not have
a univocal Hamiltonian formulation associated with a given classical Lagrangian. The multi-
dimensional variational problem (2) is tackled essentially according to two different points of
view: one developed mainly in physics and the other in mathematics.

In physics, a continuous system is interpreted as a mechanical system with an infinite
number of degrees of freedom (MSI) [4, 5]. The spatial coordinates (x1, x2, x3) have the role
of labels of these infinite degrees of freedom. The Hamiltonian formalism is developed on the
basis of this mechanical transcription. Such a formulation has a crucial role in the transition
to quantum theory of a continuous system, since it allows us to apply the SCQR of quantum
mechanics. However, it has a drawback in the fundamental distinction between time and space
variables. As is well known, this problem is bypassed in quantum theory by working in the
Heisenberg or interaction picture or in the framework of the Feynman’s functional approach.
However, due to the original point of view, further problems appear, such as the occurrence of
infinite quantities. In some cases these problems are bypassed through additional prescriptions,
such as renormalization. In these cases, the resulting (effective) quantum field theory has been
very successful. It has reached the stage of a paradigm, although accompanied by doubts
about its completeness. It runs into difficulties in the case of gravitational fields.

At a classical level, a drawback of the mechanical transcription of a continuous system
is that it leads to a Hamilton–Jacobi equation formally of functional type, which frustrates its
use. On the other hand, the mathematical analysis of multi-dimensional variational problems
does not make essential use of the interpretation of a classical continuous system as an MSI
[1, 2, 6]. In this analysis, the space coordinates are treated on the same footing as time: we have
four parameters which together take the place that the time alone has in a classical MSF. As a
matter of fact there are several approaches to multi-dimensional variational problems [1, 2, 6]
which share this point of view. However one relevant approach has been formulated, called
the De Donder–Weyl theory [1, 2, 6, 7], which introduces and makes use of a ‘Hamiltion’
function. In this theory a covariant Hamiltonian formalism is elaborated [8] and a generalized
Hamilton–Jacobi equation is obtained, which is not a functional, but a partial differential
equation.

At the classical level, the De Donder–Weyl formalism appears more appropriate than the
Hamiltonian formalism based on the mechanical transcription. However, if we consider the
transition to quantum theory, it is in conflict with the SCQR. In fact these rules require only
one canonical momentum (density) associated with each field qi(x), that is ∂L/∂0q

i(x) (as
happens in the theory based on the mechanical analogy), while in the De Donder–Weyl theory
we have four momenta

π
μ

i (x) = ∂L
∂μqi(x)

(μ = 0, 1, 2, 3; i = 1, 2, . . . , n). (4)
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Several attempts have been made in order to overcome the above difficulty and to obtain
a covariant canonical quantization [9–11, and references therein]. Unfortunately, in
these attempts, there is some arbitrariness and some insubstantiality in the probabilistic
interpretation.

It seems that the mechanical point of view is necessary, if one insists on the SCQR as the
unique tool for a quantum theory of fields. In the past there have been objections to this point
of view [12, 13]. As a matter of fact, Born [13] tried to avoid the SCQR and to introduce
an alternative quantization procedure based on a result of the multi-dimensional calculus of
variations (the Hilbert independence theorem) [14]. But his attempt was not successful.

In this paper, we again make an attempt like that of Born, but firstly we elaborate an
appropriate alternative theoretical scheme for the analysis of the transition from classical
theory to quantum theory. Developing an approach proposed in a previous work [15], we
adopt from the start a probabilistic point of view that is already at the classical level. In this
setting we make systematic use of the variational approach, by introducing a generalization of
Hamilton’s principle. In this way we obtain a scheme more flexible and more directly open to
possible extension.

The preliminary aspects of this scheme are discussed in section 2, in the context of
classical mechanics. The transition to quantum mechanics is analyzed in section 3; this
transition appears more as a natural extension than a conceptual jump. A particular role is
covered by time-reversal invariance and by the local or global character of the dynamical
equations. We will deduce the request for a mechanical system to be natural and discuss a
mechanism for the emergence of complex amplitudes. The case of a discrete random variable
(spin) is also analyzed. The probabilistic point of view is applied to classical fields in section 4.
We avoid the mechanical transcription, since it leads to an ill-defined probabilistic scheme.
However we show that there exists a well-defined probabilistic scheme, in which the usual
deterministic classical field theory can be embedded. It is very interesting that, in this scheme,
there appear, as a by-product, the equations of the De Donder–Weyl theory. We see that the
two Hamiltonian formulations, which are ‘equivalent’ from the deterministic point of view
(in the sense that they give the same equations (3)), have different implications if we adopt a
probabilistic point of view.

The transition to a quantum theory of fields is discussed in section 5. This transition, in
which the SCQR are avoided, is an extension of the results of sections 3 and 4.

2. Probabilistic variational approach to classical mechanics

We consider a conservative mechanical system with n degrees of freedom and configuration
space R

n, described by a Lagrangian L, i.e. a given smooth function of 2n independent
variables

L = L(q,w) (q = (q1, q2, . . . , qn), w = (w1, w2, . . . , wn)). (5)

The coordinates q give the configurations of the system. Let us fix a time τ > 0 and make in
(5) the substitutions

q → ξ(t), w → ξ̇ (t)

(̇
= d

dt

)
. (6)

Then we can consider the action functional

I =
∫ τ

0
L(ξ(t), ξ̇ (t)) dt. (7)

3
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According to Hamilton’s principle, the temporal evolution of our system is described by its
trajectories q(t), which are functions of t such that

d

dε
I (ε)

∣∣∣∣
ε=0

= d

dε

∫ τ

0
L(q(t) + εη(t), q̇(t) + εη̇(t)) dt

∣∣∣∣
ε=0

= 0 (8)

for every smooth function η(t) having support in [0, τ ]. As is well known, we obtain in this
way the Lagrange equations for q(t)

d

dt

∂L

∂wi
(q(t), q̇(t)) − ∂L

∂qi
(q(t), q̇(t)) = 0 (i = 1, 2, . . . , n). (9)

Now, we adopt from the start a probabilistic point of view. At each instant t ∈ [0, τ ], we
consider the configuration q a random variable described by a probability density ρ(q, t). We
limit ourselves to this assumption only, that is we do not require a priori that the temporal
evolution is necessarily described by a stochastic process. We will take into account the
obvious fact that the total probability∫

R
n

ρ(q, t) dq (dq = dq1 · · · dqn)

does not depend on the time t, assuming that this conservation law can be expressed in a local
form

∂tρ(q, t) + ∂kj
k(q, t) = 0,

(
∂k = ∂

∂qk

)
(10)

through a probability current density j (q, t) = (j 1(q, t), . . . , jn(q, t)).
We will consider j (q, t) as a further dynamical variable, which, together with ρ(q, t),

characterizes the ‘state’ of the system. As a matter of fact, (10) takes the place or generalizes
the link between q(t) and q̇(t) of the standard theory based on the notion of trajectory.
We plan to determine (adding initial conditions) ρ(q, t) and j (q, t) directly from the given
Lagrangian (5), through an appropriate generalization of Hamilton’s principle [15]. To this
end, suppose that ρ(q, t) and j (q, t) describe an actual temporal evolution of our system and
let us consider the family of subsets � = U × [t0, t1], where U is a compact domain of R

n and
0 � t0 < t1 � τ , such that ρ(q, t) > 0 for q, t ∈ �. In each � let us make the substitution

w → j (q, t)

ρ(q, t)
(11)

in the given Lagrangian (5). Due to the meaning of j (q, t) and ρ(q, t), this substitution is a
generalization of (6). Then let us consider the action functional

I�[j, ρ, λ] =
∫

�

dt dq

[
L

(
q,

j (q, t)

ρ(q, t)

)
ρ(q, t) + λ(q, t)(∂tρ(q, t) + ∂kj

k(q, t))

]
, (12)

where λ(q, t) is a Lagrange multiplier field defined in �.
We can now formulate a generalized Hamilton’s principle, which replaces (8), as follows:
‘The actual functions ρ(q, t) and j (q, t) are such that equation (10) holds in R

n × [0, τ ],
and in each � there exists a function λ(q, t) such that

∂

∂εi

I�[j + ε1j0, ρ + ε2ρ0, λ]

∣∣∣∣ε1=0
ε2=0

= 0 (i = 1, 2) (13)

for every smooth function j0(q, t) for which j0(q, t) = 0 for q ∈ ∂U , and every smooth
function ρ0(q, t) such that ρ0(q, t0) = ρ0(q, t1) = 0 and ρ0(q, t) = 0 for q ∈ ∂U .’

By considering ∂I�

∂ε1
, we deduce from this principle

∂kλ(q, t) = ∂L

∂wk

(
q,

j (q, t)

ρ(q, t))

)
, (k = 1, 2, . . . , n), (14)
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while from ∂I�

∂ε2
= 0 we obtain

∂tλ(q, t) +
jk(q, t)

ρ(q, t)

∂L

∂wk

(
q,

j (q, t)

ρ(q, t)

)
− L = 0, (15)

in each �. We note that, in the derivation of (14) and (15) the condition ρ(q, t) = 0 for
q ∈ ∂U has no role. However this condition has some implications which will be discussed
in the following.

We can solve (14) with respect to j/ρ and substitute the result in (10) and (15). To this
end, we assume that our Lagrangian satisfies the condition

det

(
∂2L

∂wi∂wj
(q,w)

)
�= 0. (16)

We see that the variation of ρ in the generalized action principle leads us directly to consider
the classical Legendre transformation. If we introduce the Hamiltonian H

H(q, p) = wkpk − L(q,w), (p = (p1, p2, . . . , pn)) (17)

where w = w(q, p) is the solution of the system of equations

pi = ∂L

∂wi
(q,w), (i = 1, 2, . . . , n) (18)

we obtain, from (14) and (17),

jk

ρ
= ∂H

∂pk

(q, ∂λ) (∂λ = ∂1λ, . . . , ∂nλ). (19)

Then (15) becomes

∂tλ + H(q, ∂λ) = 0 (q, t ∈ �). (20)

In the following, we will call global any property, equation, function and so on, which
is valid or defined on the whole R

n × [0, τ ], more precisely for every q, t,∈ R
n × [0, τ ].

Otherwise we will make use of the term local.
In the evaluation of the global dynamical variables ρ(q, t) and j (q, t), in which we are

interested, we are faced with the field variables λ(q, t), which, in principle, can be local. This
is related to the presence or absence of a set of points where ρ(q, t) = 0. But, a priori, we
have no knowledge of this set (which we will call N). Furthermore, the fields λ(q, t) have to
satisfy, in any case, some consistency conditions, since they are related, through (19), to the
variables ρ and j . However in equation (20) we do not have any terms depending on ρ (and
then on the condition ρ(q, t) > 0). Therefore, as a result of this decoupling of λ(q, t) from
ρ, the lack of knowledge of N has no influence. The consistency conditions can be solved
automatically by promoting the λ(q, t) to a global function S(q, t), thus satisfying the global
equation

∂tS(q, t) + H
(
q, ∂S(q, t)

) = 0 (q, t ∈ R
n × [0, τ ]). (21)

From (19) we deduce that j/ρ can be promoted to a global variable determined by S(q, t).
Then we can write for ρ the global equation

∂tρ(q, t) + ∂k

(
ρ(q, t)

∂H

∂pk

(q, ∂S(q, t))

)
= 0 (q, t ∈ R

n × [0, τ ]). (22)

Equation (21) is the well-known Hamilton–Jacobi equation [1–4]. Its decoupling from (22)
is responsible for the basic aspects of classical mechanics. In fact, equation (22) describes a
deterministic process. It admits, as particular solutions, probability densities ρ(q, t) with the
structure

ρ(q, t) = δ(q − q(t)), (23)

5
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where q(t) satisfies the system of first-order differential equations

q̇k(t) = ∂H

∂pk

(q(t), ∂S(q(t), t)) (k = 1, 2, . . . , n). (24)

For this q(t), one can deduce, from (21) and (24), the canonical Hamilton’s equations and the
Lagrange equations (9). We see that the type of randomness determined by a pure Lagrangian
approach is essentially related to initial conditions in the configuration space.

From the start we have deliberately avoided references to trajectories or to ensembles of
trajectories, with the aim of having a scheme more suitable for possible extensions. If we
make use of trajectories in the probabilistic approach, as happens if we assume initially that
j (q, t) = ρ(q, t)v(q, t)) (v ∈ R

n),with v(q, t) independent of ρ and regular in R
n × [0, τ ]

(a relation which is deduced in the previous scheme), then equations (21) and (22) can also
be obtained through alternative well-known classical procedures [16–18]. In this respect we
also note that (14) and (15), with j/ρ substituted by the so-called ‘geodesic fields’ (or control
fields) have already been obtained by Carathéodory in his approach to existence problems for
the extremals of the classical action (7) [1, 2, 19]. They were called by him the fundamental
equations of the calculus of variations [19]. These ingredients of the Carathéodory approach
appear in a natural and unified way in the previous probabilistic scheme.

But the essential advantage of the generalized action principle is that it provides a
springboard for a suitable more general scheme. The aim is to have a unified description
of more general dynamical behaviors involving both deterministic processes given by a
Lagrangian function L and processes not contemplated by this function. As a matter of
fact, here we will not be concerned with external (random) actions on our system, but with
more general internal mechanisms which govern its dynamics.

The possibility that there can be active additional mechanisms is strictly related to the
structure of our generalized action principle. In general, we can implement the property that
the total probability is independent of time, through a balance equation involving ∂tρ(q, t)

and several quantities connected with the dynamical processes taking place in our system. It
can be expressed in a form like that of a master equation. So we can naturally extend the
previous classical scheme by considering balance equations more general than equation (10).
Hence, our approach is based, in general, on two ingredients, a Lagrangian function L and a
master-like equation, which can involve additional processes that cannot be ascribed to this
function.

However, it is useful to take into account a further aspect of the generalized action
principle, which allows us to see classical mechanics from a new perspective. It is concerned
with the non-uniqueness of the Lagrangian function L.

In the standard variational approach, based on the trajectories, the arbitrariness of L is
expressed by the addition of a total time derivative. We have a similar situation in the case
of the generalized action principle, which is strictly related to the validity of the conservation
law (10). In fact, due to (10), the Lagrangian L and the Lagrangian L′ given by

L′ = L

(
q,

j

ρ

)
+

jk(q, t)

ρ(q, t)
∂kχ(q, t) + ∂tχ(q, t), (25)

where χ(q, t) is an arbitrary smooth function, are equivalent. They give, through the action
integral (12), the same equations of motion. Therefore the choice between L and L′ is
irrelevant. However we have another class of equivalent Lagrangians, involving only our
internal dynamical variables ρ(q, t) and j (q, t). It can be easily verified that, due to (10), the
Lagrangian L̃ given by

L̃ = L

(
q,

j

ρ

)
+ d(ρ)

jk(q, t)

ρ(q, t)
∂kρ(q, t), (26)

6



J. Phys. A: Math. Theor. 42 (2009) 395401 M Villani

where d(ρ) is a given function of ρ, is also equivalent to L. This result is strictly related to
the condition that the variation of ρ(q, t) must vanish on the boundary of U. This condition
appears superfluous at the classical level, if we take into account the structure of the action
functional (12). However the equivalence of L and L̃ allows us to interpret the scheme of
classical mechanics from a new point of view. In fact, if we consider L̃ as our Lagrangian
function, then we can say that, at the classical level, there also operate virtual internal dynamical
mechanisms, generically of diffusive type. Their manifestation is forbidden by the particular
relationship between ρ and j , given by the balance equation (10).

The fact that (10) makes irrelevant the coupling between j and ∂ρ appearing in (26),
is related to a fundamental invariance property in the dynamical behavior of a mechanical
system. Let us assume that the Lagrangian L satisfies the condition

L(g,w) = L(g,−w), (27)

as happens, in general, for the kinetic energy term. Then, as is well known, we have that
the law governing the evolution of our mechanical system, given by the classical scheme, is
invariant under time reversal. Formally, the system of equations (10) and (20) (with j given
by (19)) is invariant under the (time-reversal) transformations

t → t ′ = −t,

qi → q ′i = qi,

ρ(q, t) → ρ ′(q, t ′) = ρ(q, t), (28)

λ(q, t) → λ′(q, t ′) = −λ(q, t),

q, t ∈ � → q, t ′ ∈ �′ = U × [−t1,−t0].

Now the term jk∂kρ in (26) is not invariant under the transformations (28). Its ineffectiveness
in the classical scheme can then be ascribed to the action of the time-reversal invariance.

3. Quantum mechanics

We consider now a particular and relevant extension of the classical scheme.
First of all, in the framework of the generalized action principle, we take L̃ as the

Lagrangian function of our system, that is we take into account the virtual internal processes
which are present at the classical level. However we do not assume that ∂kj

k gives all of
the contribution to the time derivative of ρ(q, t). We can interpret the field j (q, t), which
through j/ρ determines the value of L at the point q, as a quantity related in a broad sense to
the transport or convective aspects of the dynamics. Together with ρ, j (q, t) characterizes,
as before, the ‘state’ of our mechanical system. But now, in the balance equation, we take
into account an additional non-convective contribution to ∂tρ(q, t) by considering, besides j ,
a current density jd(q, t) having a given explicit dependence on ρ. Here we limit ourselves
to a balance equation which can be still expressed in a local form. So we generalize equation
(10) to

∂tρ(q, t) + ∂kj
k(q, t) + ∂kj

k
d (q, t) = 0, (29)

with jd a certain local function of ρ

jd(q, t) = i(q, ρ(q, t), ∂lρ(q, t), ∂l∂mρ(q, t), . . .). (30)

As a matter of fact, through the current jd in the balance equation we consider a real additional
mechanism in the dynamical evolution, which is, in a broad sense, of diffusive type. However
it also makes real the processes contemplated by L̃, which are virtual when jd = 0. Starting

7
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from L̃ and the extended balance equation (29), the action integral in the generalized action
principle becomes

Ĩ�[j, ρ, λ] =
∫

�

dt dq

{[
L

(
q,

j

ρ

)
+ d(ρ)

jk

ρ
∂kρ

]
ρ(q, t)

+ λ(∂tρ + ∂kj
k + ∂ki

k(q, ρ, ∂lρ, . . .))

}
. (31)

From (31) we deduce the generalization of (14) and (15), that is

∂kλ − d(ρ)∂kρ = ∂L

∂wk

(
q,

j

ρ

)
(k = 1, 2, . . . , n), (32)

∂tλ +
jk

ρ

∂L

∂wk

(
q,

j

ρ

)
− L + d(ρ)∂kj

k + (∂kλ)
∂ik

∂ρ

− ∂k

(
(∂lλ)

∂il

∂(∂kρ)

)
+ ∂k∂l

(
(∂mλ)

∂im

∂(∂k∂lρ)

)
− · · · = 0, (33)

in every �.
By introducing the Hamiltonian H, we obtain the system of the two coupled equations

∂tλ + H(q, ∂λ − d(ρ)∂ρ) + d(ρ)∂k

(
ρ

∂H

∂pk

(q, ∂λ − d(ρ)∂ρ)

)
+ (∂kλ)

∂ik

∂ρ
− ∂k

(
(∂lλ)

∂il

∂(∂kρ)

)
+ ∂k∂l

(
(∂mλ)

∂im

∂(∂k∂lρ)

)
− · · · = 0 (34)

∂tρ + ∂k

(
ρ

∂H

∂pk

(q, ∂λ − d(ρ)∂ρ))

)
+ ∂ki

k = 0, (35)

in every �.
In general, in the system of equations (34) and (35) we lose time reversal invariance.

However we impose on our extension of the classical scheme the explicit condition that
the invariance under the transformation (28) is preserved, notwithstanding the presence of
the current i(q, ρ, ∂lρ, . . .) and of d(ρ)∂ρ. As a matter of fact we have two types of diffusive
processes, which can have a competitive or antagonistic role. As we will see, the requirement
of time-reversal invariance selects an important class of mechanical systems. Moreover, it
allows us to deduce completely, from the knowledge of L̃, the specific structure of jd .

A condition for the invariance under the transformations (28) is that d(ρ) must be
necessarily different from zero when jd �= 0, as can be easily seen from equations (35).
Moreover, by considering (34), we deduce from (28) that this invariance requires

1

2
[H(q, ∂λ − d(ρ)∂ρ) − H(q,−∂λ − d(ρ)∂ρ)]

+ d(ρ)∂i

[
ρ

2

(
∂H

∂pi

(q, ∂λ − d(ρ)∂ρ
)− ∂H

∂pi

(q,−∂λ − d(ρ)∂ρ)

)]
+ (∂kλ)

∂ik

∂ρ
− ∂k

(
(∂lλ)

∂il

∂∂kρ

)
+ ∂k∂l

(
(∂mλ)

∂im

∂(∂k∂lρ)

)
− · · · = 0. (36)

From the structure of equation (36) and the requirement that it must be satisfied identically by
λ and ρ, we deduce that H(q, ∂λ − d(ρ)∂ρ) − H(q,−∂λ − d(ρ)∂ρ) must be linear in ∂λ, or,
in other words, that H(q, p) must be quadratic in p. So, the request that the system (34) and
(35) be invariant under the time-reversal transformations (28), forces us to limit ourselves to

8
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natural [20] Lagrangian systems, that is to mechanical systems described by a Lagrangian of
the type

L = L(q,w) = 1
2mij (q)wiwj − V (q), (37)

where mij (q)(= mji(q)) is a positive-definite mass matrix.
From (36) we also deduce

∂im

∂(∂k∂lρ)
= ∂im

∂(∂k∂l∂jρ)
= · · · = 0,

so that

jd = i(q, ρ, ∂ρ). (38)

Hereafter we will fix our attention on the Lagrangian (37). We have

H(q, p) = 1
2mij (q)pipj + V (q), (39)

where mij is the inverse matrix of mij . Condition (36) of time-reversal invariance becomes

∂kλ

[
ρd(ρ)∂jm

ij +
∂ik

∂ρ
− ∂j

(
∂ik

∂(∂jρ)

)]
+ ∂k∂jλ

[
ρd(ρ)mkj − ∂ik

∂(∂jρ)

]
= 0. (40)

In order that (40) be satisfied identically by λ and ρ, we must have a relationship between
d(ρ) and the current i(q, ρ, ∂ρ). It is given by

ik(q, ρ, ∂ρ) = mkj (q)ρd(ρ)∂jρ + ĩk(q) (k = 1, 2, . . . , n). (41)

It can be easily verified that (41) also makes equation (35) time-reversal invariant, provided
∂kĩ

k(q) = 0. So ĩk(q) is irrelevant and can be completely neglected. We conclude that ik

must be a diffusion current of the type

ik = −Dkj (q, ρ)∂jρ, (42)

with a matrix diffusion coefficient determined by the mass matrix and by the ‘coupling’
function d(ρ) (so that, in general, it depends on ρ), i.e.

Dkj (q, ρ) = −ρd(ρ)mkj (q). (43)

So, we have worked out a formulation of a class of dynamical behaviors, which generalizes
the classical scheme, but preserves in any case the property of time-reversal invariance. This
class is characterized by the action functional (31), the Lagrangian (37) and the relationship
(41) (with ĩk = 0). The law governing these dynamical behaviors follows from (34) and (35).
We have

∂tλ + 1
2mij∂iλ∂jλ + V + 1

2mij (ρd2(ρ))′∂iρ∂jρ − ∂i(m
ijρd2(ρ)∂jρ) = 0, (44)

∂tρ + ∂i(ρ mij ∂jλ) = 0, (45)

in every � where ρ > 0
(
()′ = d

dρ
()
)
.

It is useful to note that the system (44) and (45) has a Hamiltonian structure, with ρ(q, t)

and λ(q, t) playing the role of conjugate fields variables. From (31) and (32) it follows easily
that (44) and (45) can be deduced directly from the standard variational principle applied to
the action functional

A�[λ, ρ] =
∫

�

dt dq[−ρ∂tλ − He], (46)

with the effective Hamiltonian density He given by

He(ρ, ∂ρ, λ, ∂λ) = + ρ
[

1
2mkl∂kλ∂lλ + V

]
+ 1

2ρd2(ρ)mkl∂kρ∂lρ. (47)

9
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(The variation of λ must vanish on the boundary of �.) A particular case of (47) has been
previously postulated in the Fényes theory [21].

Now, our problem is to determine the global field variables ρ(q, t) and j (q, t), having
at our disposal the two coupled local equations (44) and (45) and the local relationship (32).
From this we deduce, as before, that the local (in principle) fields λ(q, t) must satisfy some
consistency conditions. In this respect we observe that if ρd2(ρ) is a smooth function of ρ,
regular at ρ = 0, there appears no effective restriction on the set of points in R

n × [0, τ ] in
which equations (44) and (45) can be considered valid. In this case, the Hamiltonian He is a
smooth function in every domain of R

n × [0, τ ]. As a consequence, in this case, λ(q, t) can
be promoted to a global field variable S(q, t), as happens in the classical scheme. But now
the equation for S(q, t) also involves ρ(q, t). Such a situation will be called the extended
classical domain. We can make a further step and go beyond the extended classical domain,
by considering the situation in which ρd2(ρ) is singular at ρ = 0. In this case the above
straightforward globalization does not apply. However we can ask if this singularity can be
absorbed in a canonical transformation of the field variables ρ(q, t) and λ(q, t), allowing, in
terms of the new variables, a straightforward global description of dynamical behaviors not
contemplated by the extended classical domain.

By fixing attention on a set �, let us express ρ and λ in terms of two new variables

ρ = P(u, v) λ = �(u, v). (48)

We will assume that the transformation defined in (48) is canonical, i.e. it has the property that
there exists a function F(u, v) such that

Pd� = udu + dF. (49)

By considering u and v as fields, u = u(q, t) and v = v(q, t), the system (44) and (45) will be
transformed in a new system involving u = u(q, t) and v = v(q, t), still having a canonical
structure.

A necessary and sufficient condition that (48) be canonical is
∂(P,�)

∂(u, v)
= ∂P

∂u

∂�

∂v
− ∂P

∂v

∂�

∂u
= +1. (50)

Now, suppose that ρd2(ρ) is singular at ρ = 0. Since we consider ρ,j and jd , which appear in
the global balance equation (29), as global field variables, we deduce from (41) that we must
have in any case that ρd(ρ) is regular at ρ = 0. This means that ρd2(ρ) must have a pole of
first order at ρ = 0. So we can write

ρd2(ρ) = (a/2)2

ρ
+ g(ρ) (a > 0), (51)

where a is a constant and g(ρ) is a smooth function of ρ, regular at ρ = 0.
By considering the canonical transformation (48), we have

− ρ∂tλ − He = −u(q, t)∂tv(q, t) − H′
e(u, ∂u, v, ∂v) + ∂tF (u, v), (52)

where according to (51), the transformed effective Hamiltonian density is given by

H′
e = 1

2
mkl

{[
P

(
∂�

∂u

)2

+
(a/2)2

P

(
∂P

∂u

)2]
∂ku∂lu−

[
P

(
∂�

∂v

)2

+
(a/2)2

P

(
∂P

∂v

)2]
∂kv∂lv

− 2

[
P

(
∂�

∂u

)(
∂�

∂v

)
+

(a/2)2

P

(
∂P

∂u

)(
∂P

∂v

)]
∂ku∂lv

}
+

1

2
mklg(P )∂kP ∂lP + PV. (53)

Our aim is to eliminate, through an appropriate choice of the canonical transformation,
the singular dependence of H′

e on P, at P = 0. If this happens, the field variables involved

10
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in this transformation can be promoted straight-forwardly to global variables. To this end, on
the basis of the structure of the coefficients of the quadratic form appearing in (53) and of the
condition (50), we consider a transformation such that

a

2

∂P

∂u
= P

∂�

∂v

a

2

∂P

∂v
= −P

∂�

∂u
. (54)

If (50) and (54) are satisfied, we have

P

(
∂�

∂u

)(
∂�

∂v

)
+

(a/2)2

P

(
∂P

∂u

)(
∂P

∂v

)
= 0,

P

(
∂�

∂u

)2

+
(a/2)2

P

(
∂P

∂u

)2

= P

(
∂�

∂v

)2

+
(a/2)2

P

(
∂P

∂v

)2

= a

2
. (55)

So the singular dependence on P, at P = 0, disappears. Now, let us determine the above
canonical transformation. From (54) it follows that log P and �/(a/2) must be the real and
the imaginary part of an analytic function f (z)

log P + i
�

a/2
= f (z), (56)

with z = u + iv. Furthermore, due to (50), we have

|f ′(z)|2 =
(

∂ log P

∂u

)2

+

(
∂

∂u

�

a/2

)2

= 1

P · a/2
. (57)

Then, by making use of (56), we deduce that f (z) satisfies the equation∣∣∣∣ d

dz
ef (z)/2

∣∣∣∣2 = 1

2a
. (58)

Therefore

e
f (z)

2 =
(

1

2a

) 1
2

eiϕ(z + c1 + ic2), (59)

where ϕ, c1, c2 are real constants.
In conclusion, the canonical transformation which satisfies (54) is given by

P(u, v) = (u + c1)
2 + (v + c2)

2

2a
�(u, v)

a
= arg(u + c1 + i(v + c2)) + ϕ.

(60)

(In � we can select a determination of arg.) So, as a consequence of (51), in this case the
probability density is related to the squared modulus of a complex amplitude, while � is
connected with the phase of this amplitude. Such a situation will be called, in general, the
extended quantum domain. The constants c1 and c2 can be absorbed in a further canonical
transformation: u′ = u + c1, v

′ = v + c2. Furthermore, it is useful to use the scaled field
variables

ψ1 = u′

(2a)
1
2

ψ2 = v′

(2a)
1
2

,

so that (60) becomes

P(ψ1, ψ2) = ψ2
1 + ψ2

2 ,
�(ψ1, ψ2)

a
= arctan

ψ1

ψ2
+ ϕ. (61)

11
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By considering the effective Lagrangian

Le = −ρ∂tλ − He, (62)

which gives the system (45), we deduce, from (52)–(55) and (61), that Le is also given by

Le = −a(ψ1∂tψ2 − ψ2∂tψ1) + 1
2a2mkl(∂kψ1∂lψ1 + ∂kψ2∂lψ2) − V (q)

(
ψ2

1 + ψ2
2

)
− 2g

(
ψ2

1 + ψ2
2

)
mkl(ψ1∂kψ1 + ψ2∂kψ2) · (ψ1∂lψ1 + ψ2∂lψ2), (63)

where we have neglected a term involving a total time derivative.
Although we have derived (63) in a set �, we see that all the coefficients of the quadratic

form involving ∂kψ1, ∂lψ2 are regular functions, even at ρ = ψ2
1 + ψ2

2 = 0. So there is
no effective restriction to considering Le, as given by (63), on the whole R

n × [0, τ ] and
to promoting straight-forwardly ψ1(q, t) and ψ2(q, t) to global field variables. From (63)
we can deduce a system of two equations for ψ1 and ψ2, which globalizes the system (44)
and (45).

In this respect, it is useful to consider a further canonical transformation, by introducing
a complex field ψ and its conjugate

ψ = ψ1 + iψ2 ψ∗ = ψ1 − iψ2. (64)

In terms of the field variables ψ and ψ∗, the Lagrangian (63) becomes

Le = +i
a

2
(ψ∗∂tψ − ψ∂tψ

∗) − 1

2
a2mkl∂kψ

∗∂lψ − V ψ∗ψ

− g(ψ∗ψ)

2
mkl(ψ∗∂kψ + ψ∂kψ

∗)(ψ∗∂lψ + ψ∂lψ
∗). (65)

From (65) we deduce a system of two equations for ψ and ψ∗. One of these equations is the
complex conjugate of the other. In general, there is a coupling between the two equations.
The usefulness of the canonical fields ψ and ψ∗ stems from the fact that they allow us to
determine a single and relevant circumstance in which we obtain two decoupled equations.
This happens when

g(ψ∗ψ) = 0. (66)

In this case, we have a situation analogous (but more symmetrical) to that of the classical
domain, in which a canonical field is decoupled from the other. In the classical domain
the decoupling is responsible for the existence of deterministic trajectories. The decoupling
obtained when (66) is satisfied, is responsible for the linearity of the resulting equation for ψ

(or ψ∗). In this case we speak of the quantum domain. When (66) is satisfied, we deduce
from (65)

ia∂tψ(q, t) = −a2

2
∂i(m

ij (q)∂jψ(q, t)) + V (q)ψ(q, t). (67)

For

a = h̄, (68)

(67) is the Schrödinger equation which governs the quantum mechanics of a natural mechanical
system. If g(ψ∗ψ) �= 0, we obtain a nonlinear Schrödinger equation.

It is useful to stress that the need for the field variables like ψ1(q, t) and ψ2(q, t) is related
to the fact that our problem is to determine the global field variables ρ(q, t) and j (q, t),
while at an intermediate step we have to introduce a local (in principle) field variable, that
is λ(q, t). We are then faced with the solution of some matching conditions, which among
other things would require knowledge (the set N) not given a priori. These conditions are
automatically solved by considering new field variables for which there is no obstacle to being

12
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extended globally in straight-forward way. Without any conditions we could not say that the
system of local equations (44) and (45) is equivalent, for g(ψ∗ψ) = 0, to the Schrödinger
equation, which is valid globally. As a matter of fact (44) and (45) is a system of generalized
Madelung hydrodynamic equations [15, 18]. The inequivalence between the Schrödinger
equation and the Madelung equations has been already discussed by Wallstrom [22]. However
it is significant that, when (66) is satisfied, the system of local equations (44) and (45) can
be interpreted in terms of classical Brownian trajectories, as shown in Nelson’s stochastic
mechanics approach [16, 17, 23, 24].

Our previous analysis provides, as a particularly relevant case, a scheme for a quantization
procedure. In this respect we note that, in the framework of the canonical quantization rules,
we have, in general, a problem with the ordering of the product of noncommuting operators, as
happens when an Hamiltonian of the type (39) is considered generally. Our scheme, through
equation (67), allows us to give an answer to this problem. Furthermore we remark that the
consideration of the Lagrangian Le(63) or (65) is also useful from another point of view.
By applying to Le the Noëther theorem [3], we can select the relevant conserved physical
quantities, associated with the symmetry properties of our mechanical system. When (66) is
satisfied, these quantities are in correspondence with the expectation values of the operators
of the standard quantum theory [18].

From the theoretical point of view, our approach predicts different dynamical behaviors,
according to the structure of d(ρ). This structure cannot be given a priori, without further
considerations. In principle, it must be argued on physical grounds.

The quantization procedure afforded by the previous scheme requires that the mechanical
system be natural, a property not necessarily contemplated by the canonical quantization rules.
We could also develop a ‘quantum’ theory of a non-natural mechanical system, on the basis
of the action (31) or the system (34) and (35). The resulting ‘quantum’-dynamical behavior
would break the time reversal invariance of the classical level. We note that a mechanical
system with relativistic kinematics is non-natural. In this case, we are also faced with a
‘homogeneous’ problem in the calculus of variations [2, 19].

In the case of ‘homogeneous’ problems, or problems in parametric form, condition (16)
is not satisfied. In order to treat these cases (singular Lagrangians), within our approach,
we need further elaboration as done in the calculus of variations or in the Dirac approach to
constrained Hamiltonian systems [29]. The limiting procedure of Rothe [30] could also be
useful. These aspects will be investigated elsewhere.

We conclude this section with a provisional discussion of another extension of the classical
scheme, which can be formulated in the framework of our approach.

Suppose we consider the time evolution in the interval [0, τ ] of a dynamical system whose
configurations are described by a discrete variable assuming a finite number N of values. These
values will be labelled by a discrete index running from 1 to N. At each instant t ∈ [0, τ ]
we consider the configuration of the system a discrete random variable described by a set of
probabilities pα(t) (α = 1, 2, . . . , N).

As a first step, in order to take into account of the fact that

N∑
α=1

pα(t)

does not depend on t, we introduce a quite general balance equation in the form

ṗα(t) +
N∑

β=1

(γαβ(t) − γβα(t)) = 0 (α = 1, 2, . . . , N). (69)

13
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The non-local and discrete equation (69) takes the place of (10). We plan to determine
variationally pα(t) and γαβ(t). In this respect, here we will assume that the functions pα(t),
for each α, are such that they have at most a finite number of zeros in the interval [0, τ ]. As
a second step we introduce a ‘Lagrangian’ L(ξ), a smooth function of a real variable ξ , and a
real symmetric matrix Uαβ , time independent, which will be connected with the extension of
the local substitution (11). We will assume that

L(−ξ) = L(ξ) (70)

and

Uαβ = Uβα �= 0 ∀α, β. (71)

Suppose now that pα(t) and γβα give an actual temporal evolution of our system and let us
consider the family of subset � of [0, τ ], formed by finite unions of disjoint closed internals
in which pα(t) > 0, for every α. As a final step, in each � we extend (11) by the ‘non-local’
substitution

ξ → γαβ(t)

p
1
2
α (t)Uαβp

1
2
β (t)

. (72)

Then we replace the action functional (12) by

I�[γαβ, pα, λα] =
∫

�

dt

N∑
α=1

⎧⎨⎩
N∑

β=1

L

⎛⎝ γαβ(t)

p
1
2
α (t)Uαβp

1
2
β (t)

⎞⎠p
1
2
α (t)Uαβp

1
2
β (t)

− λα(t)

⎛⎝ṗα(t) +
N∑

β=1

(γαβ(t) − γβα(t))

⎞⎠⎫⎬⎭ . (73)

By applying straight-forwardly the generalized action principle we deduce from (73)

λα(t) − λβ(t) = dL
dξ

⎛⎝ γαβ(t)

p
1
2
α (t)Uαβp

1
2
β (t)

⎞⎠ (α, β = 1, . . . , N; t ∈ �). (74)

By introducing again a Legendre transformation

H(η) = ηξ − L(ξ), (75)

we can write

γαβ(t) = p
1
2
α (t)Uαβp

1
2
β (t)

dH
dη

(λα(t) − λβ(t))

(α, β = 1, . . . , N; t ∈ �). (76)

Then we obtain the system of equations:

λ̇α −
N∑

β=1

Uαβ

p
1
2
β

p
1
2
α

H(λα − λβ) = 0 (77)

ṗα + 2
N∑

β=1

p
1
2
α (t)Uαβp

1
2
β (t)

dH
dη

(λα − λβ) = 0

(α, β = 1, . . . , N; t ∈ �),

(78)

where we have made use of (70), (71) and (76).
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The system (77) and (78) defines an Hamiltonian structure. It can be deduced directly
from the action functional

A�[λα, pα] =
∫

�

⎡⎣−
N∑

α=1

pα(t)λ̇α(t) +
N∑

α,β=1

p
1
2
α (t)Uαβp

1
2
β (t)H(λα − λβ)

⎤⎦ . (79)

We see that the local character of the system (77) and (78) is determined by the non-analytic
square root dependence on pα(t) of the action functional (79). Then we can obtain an explicit
description of a global dynamical behavior, if we can absorb this dependence in a canonical
transformation involving variables which can be extended globally without any condition.
However, in order to carry out this plan, we have to select appropriately the structure of H(η).
As a matter of fact our goal can be realized quite easily, by choosing as our ‘Hamiltonian’

H(η) = b cos
η

a
(a > 0), (80)

where a and b are real constants. We have then immediately the appropriate canonical
transformation, which, written in the standard form involving complex quantities, is given by

ψα(t) = p
1
2
α ei λα(t)

a . (81)

The action functional (79) becomes

A�[λα, pα] = A�[ψα] =
∫

�

⎡⎣i
a

2

N∑
α=1

(
ψ∗

αψ̇α − ψαψ̇α

)
+

N∑
α,β=1

ψ∗
αbUαβψβ

⎤⎦ . (82)

In terms of the variables ψα(t) we obtain straight-forwardly a global description of the
dynamical behavior. As a matter of fact ψα(t) which are solutions of the evolution equations
are analytic functions of �, so that our assumption on the zeros of pα(t) is satisfied.

We consider two generalizations of the previous result. We can introduce a possible
constant shift in the stationary point of γαβ(t), by adding in the integrand of equation (73) a
term linear in γαβ(t)

−
N∑

α,β=1

θαβγαβ(t), (83)

where the given real matrix θαβ is antisymmetric (θαβ = −θβα). On the other hand, through
an appropriate limiting procedure, we can also consider the case in which some elements of
the matrix Uαβ are equal to zero. Then we obtain the final global effective action functional

A�[ψα] =
∫ τ

0

⎡⎣i
a

2

N∑
α=1

(
ψ∗

αψ̇α − ψαψ̇α
∗)−

N∑
α,β=1

ψ∗
αhαβψβ

⎤⎦ , (84)

with a generic Hermitian matrix hαβ given by

hαβ = −bUαβ e−i
θαβ

a . (85)

From (84) we deduce the standard discrete Schrödinger equation

ih̄ψ̇α(t) =
N∑

β=1

hαβψβ(t) (α = 1, 2, . . . , N), (86)

which governs the quantum dynamics of a discrete random variable, like the spin.
We finally note that it is possible to consider also the situation in which we have both

continuous and discrete random variables.
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4. Probabilistic variational approach to classical field theory

Let us come back to our physical system described classically by a set of real fields qi(x) and
the Lagrangian density (1). By following the theoretical scheme of section 2, we adopt from
the start a probabilistic point of view and, at the same time, we plan to generalize the standard
variational principle based on the action (2).

At first sight, the immersion of the deterministic classical field theory in a probabilistic
scheme could be realized immediately if a field is considered as an MSI. As a matter of fact
the mechanical transcription allows us to obtain a Hamilton–Jacobi equation. In this case, we
have a functional equation, involving a functional S

(
[q(�x), t]

)
, for each t, of the configurations

q(�x) of our system of fields
(�x = (x1, x2, x3)

)
. However, we meet with difficulties if we want

to place at the side of S
(
[q(�x), t]

)
, a functional probability density ρ

(
[q(�x), t]

)
. There is no

Lebesgue measure in an infinite-dimensional space and there are problems with a functional
divergence theorem. So we are faced with a probabilistic scheme which is already ill-defined
at the classical level, before the transition to quantum theory. Furthermore, space and time are
treated in an asymmetric way. On the other hand, as will be discussed in the following, it is
possible to embed deterministic classical field theory in a simple and well-defined probabilistic
scheme in which the above difficulties are avoided.

At each spacetime point x, we treat the values q = (q1, q2, . . . , qn) of the set of our fields
as random variables described by a probability density ρ(q, x). We have now that the total
probability ∫

R
n

ρ(q, x) dq

does not depend on the spacetime point x. We assume again that this independence can be
expressed in a local form

∂μρ(q, x) + ∂kj
k
μ(q, x) = 0 (μ = 0, 1, 2, 3). (87)

So, together with ρ(q, x), we have now four probability current densities jμ(q, x) =(
j 1
μ(q, x), . . . , jn

μ(q, x)
)

through which the ‘state’ of the system is characterized. In terms of
ρ(q, x) and jμ(q, x) we can extend in a natural way the generalized Hamilton’s principle of
section 2 to fields.

It is formally convenient to take into account the property that the Lagrangian density (1)
is a function of q and of 4n independent variables wμ = (w1

μ, . . . , wn
μ),

L = L(q,wμ). (88)

Now, suppose that ρ(q, x) and jμ(q, x) describe an actual evolution of our system in the
spacetime. We consider the family of subsets �+ = U × Z, where U and Z are compact
domains of R

n and M, respectively, such that ρ(q, x) > 0 for q, x ∈ �+. In each �+, we
make the substitution (analogous to (11)

wμ → jμ(q, x)

ρ(q, x)

in the given Lagrangian (88) and then we consider the action functional

I�+ [jμ, ρ, λσ ] =
∫

�+

dx dq

[
L
(

q,
jμ(q, x)

ρ(q, x)

)
ρ(q, x) + λν

(
∂νρ(q, x) + ∂kj

k
ν (q, x)

)]
, (89)

where, in order to take into account equations (87), we have introduced four Lagrange
multiplier fields λμ(q, x), defined in �+. Now we demand that the actual ρ(q, x) and jμ(q, x)

are such that I�+ [jμ, ρ, λσ ] is stationary under smooth independent variations δρ(q, x) of
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ρ(q, x) and δjμ(q, x) of jμ(q, x), with δρ(q, x) = 0 for q, x ∈ ∂U × ∂Z and δjμ(q, x) = 0
for q ∈ ∂U . Furthermore equations (87) must hold.

By considering the variation of jμ(q, x) we obtain from (89)

∂kλ
ν(q, x) = ∂L

∂wk
ν

(
q,

jμ(q, x)

ρ(q, x)

)
(k = 1, 2, . . . , n; ν = 0, 1, 2, 3). (90)

The variation of ρ gives

∂νλ
ν(q, x) +

jμ(q, x)

ρ(q, x)

∂L
∂wk

ν

(
q,

jμ(q, x)

ρ(q, x)

)
− L

(
q,

jμ(q, x)

ρ(q, x)

)
= 0. (91)

Now let us assume that

det

[
∂2L

∂wi
ν∂w

j
σ

(q,wμ)

]
�= 0. (92)

Then we can solve (90) with respect to jμ

/
ρ. Through this solution, equations (87) and

(91) can be expressed in an appropriate and useful form, by again making use of the Legendre
transformation.

Let us introduce a generalized ‘Hamiltonian’ function H
H = H(q, πμ) = wk

νπ
ν
k − L(q,wμ)

(
πμ = (

π
μ

1 , . . . , πμ
n

))
, (93)

where wk
ν(q, πμ) is the solution of the system of equations

πν
i = ∂L

∂wi
ν

(q,wμ). (94)

Then we have

jk
ν

ρ
= ∂H

∂πν
k

(q, ∂λμ) (∂λμ = (∂1λ
μ, . . . , ∂nλ

μ)). (95)

So we obtain the system of equations

∂νλ
ν(q, x) + H(q, ∂λσ (q, x)) = 0, (96)

∂μρ(q, x) + ∂k

(
ρ

∂H
∂π

μ

k

(q, ∂λσ (q, x))

)
= 0 (q, x ∈ �+). (97)

Due to the absence of an explicit restriction connected with the set of points in R
n × M where

ρ(q, x) = 0, we can reconsider (96) and (97) as equations in R
n × M , free from constraints.

They are the version, in the framework of the previous probabilistic scheme for classical field
theory, of equations (21) and (22) for an MSF. Through (96) we have obtained a generalization
to field theory of the Hamilton–Jacobi equation. However this generalization is again a partial
differential equation, and not a functional equation, as happens in the standard canonical
field theory. Furthermore the space coordinates are treated on the same footing as the time.
These four parameters together take the place that the time alone had in previous sections.
The system (96) and (97) satisfies manifestly relativistic invariance, if L, as we will always
assume, is a Lorentz scalar. The generalized ‘Hamiltonian’ H, given by (93), is not an energy
density, but a Lorentz scalar. Another feature of our approach to field theory is the occurrence
of a system of four equations for ρ, in place of only the one equation (22) for an MSF. As a
consequence (96) is now not decoupled from (97). The functions λμ(q, x), besides satisfying
(96), have to guarantee the consistency of the system (97).

The Euler–Lagrange equations of the standard deterministic classical field theory can be
considered as a particular consequence of the system (96) and (97).
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Let q(x) = (q1(x), . . . , qn(x))) be a classical field. It can be easily verified that (97)
admits as a particular solution the probability density

ρ(q, x) = δ(q − q(x)) (98)

if, and only if, the field q(x) is such that

∂σ qk(x) = ∂H
∂πσ

k

(q(x), ∂λμ(q(x), x)). (99)

On the other hand, by deriving (96) with respect to qi , we see that q(x) must also satisfy the
equation

∂ν∂iλ
ν(q(x), x) = − ∂H

∂qi
(q(x), ∂λμ(q(x), x)). (100)

By taking into account the Legendre transformation (93), we deduce from (99)

∂iλ
μ(q(x), x) = ∂L

∂wi
μ

(q(x), ∂νq(x)) ≡ π
μ

i (x). (101)

Then equation (100) gives

∂ν

(
∂L
∂wi

ν

(q(x), ∂μq(x))

)
− ∂L

∂qi
(q(x), ∂μq(x)) = 0,

that is the Euler–Lagrange equations (3) for the field q(x).
A function q(x) which is a solution to (99), with λμ(q, x) a solution to (96), is said to be

embedded in a geodesic field [2, 6, 25]. As we have seen, such a function is an extremal, i.e.
a solution to (3). It can be shown that any extremal q(x) can be embedded in a geodesic field,
in some neighborhood of the surface q = q(x) [1, 2, 6, 7, 25].

We can take directly as unknown the fields ∂iλ
μ(q(x), x) = π

μ

i (x). Then we can consider
directly the system

∂μqi(x) = ∂H
∂π

μ

i

(q(x), πν(x)), (102)

∂μπ
μ

i (x) = − ∂H
∂qi

(q(x), πν(x)), (103)

which is the relativistic covariant version, in classical field theory, of the canonical Hamilton’s
equations.

As a matter of fact, equations (96), (99), (102), (103), which we have been deduced
through our probabilistic approach, have already been obtained on the basis of different
considerations, in the deterministic De Donder–Weyl theory developed for multi-dimensional
variational problems [1, 2, 6–8, 14, 25]. In the framework of the deterministic classical field
theory, they have been also reobtained elsewhere [26, 27].

We note that, in the De Donder–Weyl theory for classical fields, the relevant aspect of
manifest relativistic covariance compels to have four ‘momentum density’ π

μ

i (x) conjugates
to each classical field qi(x). This makes the standard Poisson brackets formalism and then the
transition to a quantum theory problematic. However this redundance of conjugate variables
π

μ

i (x) can be reduced through proper constraints. As a matter of fact these constraints are
contained in equations (102).

We can consider a family of space-like surfaces which covers simply the manifold M. Such
a family can be related to a description of the dynamical evolution of our system. However,
in the following, for simplicity, we will limit ourselves to surfaces having x0 constant.
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Now the three equations in (102)

∂mqi(x) = ∂H
∂πm

i

(q(x), π0(x), πn(x)) (m = 1, 2, 3) (104)

can be interpreted as constraints for the fields πn(x) (n = 1, 2, 3).
By solving them, we will obtain

πm
i (x) = Fm

i (q(x), π0(x), ∂nq(x)). (105)

Then we can introduce the function

Hc(q(x), π0(x), ∂mq(x)) = H(q(x), π0(x), Fm(q(x), π0(x), ∂nq(x)))

− (∂mqi(x))Fm
i (q(x), π0(x), ∂nq(x)). (106)

We have

Fm
i (q(x), π0(x), ∂nq(x)) = − ∂Hc

∂(∂mqi(x))
. (107)

The system (102) and (103) is then reduced to

∂0q
i(x) = ∂Hc

∂π0
i

(108)

∂0π
0
i (x) = −

(
∂Hc

∂qi

− ∂m

∂Hc

∂(∂mqi(x))

)
, (109)

that is the system of equations of the standard Hamiltonian formalism [4], related to the
description of a classical field as an MSI. Really, it follows from (93) that Hc is the standard
Hamiltonian density.

Then we see that if we carry out the elimination of the conjugate fields πn
i (x), the resulting

theory (which is the standard one) meets with the difficulties mentioned at the beginning of
this section. On the other hand, if we keep the complete manifest covariant structure of the
De Donder–Weyl theory, then this theory, as we have shown, can be embedded in a simple
and well-defined probabilistic scheme, related to a relativistic invariant generalized partial
differential equation of Hamilton–Jacobi type. In such a scheme it is possible to contemplate
quantum extensions, as in the previous section, which are disengaged from the usual SCQR.
This will be done in the following section.

Due to (89) and (95), the basic equations of the previous scheme, that is (96) and (97),
can be derived directly from the standard variational principle applied to the action integral

A�[ρ, λμ] =
∫

�

dx dq[−λν(q, x)∂νρ(q, x) + H(q, ∂λμ)ρ(q, x)], (110)

where � is now a generic domain of R
n × M . The variations of λμ must vanish on the

boundary of �. From the point of view of standard classical field theory, we see then that
only λ0(q, x) has a conjugate variable, that is ρ(q, x), while for λm(q, x) (m = 1, 2, 3) such
conjugate variables are absent. Therefore three of equations (97), that is

∂mρ(q, x) + ∂k

(
ρ

∂Hl

∂πm
k

(q, ∂λσ (q, x))

)
= 0 (m = 1, 2, 3) (111)

have to be considered as constraints of the dynamical evolution, in analogy with what happens
for the system (102). We note that the constraints which appear in the previous approach are
intrinsically related to the property that the generalized Hamiltonian is a scalar, and not an
energy density. As a matter of fact, due to (92), we are not treating singular Lagrangians. It
seems that these constraints have a role different from that given by the Dirac approach.
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We conclude this section with the following remarks. First of all, the previous probabilistic
approach to classical field theory requires, in general, some caution. This is related to
condition (92), which makes possible a transition from the Lagrangian formalism to a covariant
Hamiltonian formalism. In the case of a classical Dirac field, it is well known that the
Lagrangian density is linear in the derivatives of the field components so that condition (92)
cannot be satisfied. Another problem, of technical character, appears if we have constraints
between the components of classical fields, as happens in the case of vector fields. The role
and meaning of these cases in our probabilistic approach will be investigated elsewhere. In
the following we will limit our considerations to scalar fields having the property of satisfying
condition (92).

Since we assumed that our classical Lagrangian density (1) does not depend explicitly on
x, we can consider the invariance of our probabilistic theory under spacetime translations, that
is under the transformation

y = (x, q) → y ′ = (x + ε, q) ε = (ε0, ε1, ε2, ε3). (112)

Then, from (112) and a straight-forward application of the Noether’s theorem to the action
(110), we deduce the local conservation law

∂μ

(
T μ

ν (q, x)ρ(q, x)
)

+ ∂iQ
i
ν(q, x) = 0, (113)

with

T σ
ν (q, x) = ∂kλ

σ (q, x)
∂H
∂πν

k

(q, ∂λμ) + gσ
ν

(
H − ∂kλ

α ∂H
∂πα

k

)
. (114)

Qi
ν is a function of q, ρ(q, x), ∂λμ(q, x).

So, our approach contemplates a random energy–momentum tensor T μ
ν (q, x) given by

(114). If we consider the mean of T μ
ν (q, x) at the point x

T
μ

ν (q, x) =
∫

R
n

T μ
ν (q, x)ρ(q, x) dq (115)

we deduce from (113)

∂μT
μ
(x) = 0. (116)

In the case of the solution (98), we obtain from (114) and (115)

T
σ

ν (x) = Tc
σ
ν (x) = ∂L

∂wi
σ

(q(x), ∂μq(x))∂νq
i(x) − gσ

ν L(q(x), ∂μq(x)), (117)

i.e. the standard result of the deterministic classical field theory.

5. The quantum extension for scalar fields

We develop a quantum theory for scalar fields, starting from the probabilistic scheme of the
previous section and following the approach of section 3. We will limit our considerations to
a set of n real fields described by a ‘natural’ Lagrangian function

L(q,wμ) = 1
2ηij (q)wi

νw
νj − V (q), (118)

where ηij (q) is positive definite ∀q (ηij (q) = ηji(q), the inverse matrix is denoted by ηij (q)).
The Hamiltonian function (93) in this case becomes

H(q, πμ) = 1
2ηij (q)πνiπ

ν
j + V (q). (119)

As a first step of an extension of the scheme of the previous section, we take into account, in
the balance equation (87), an additional contribution to ∂μρ(q, x). This is given by current
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densities ikμ(q, ρ(q, x), ∂iρ(q, x), . . .) having a local dependence on ρ and on its derivatives
with respect to qi . So equation (87) is extended to

∂μρ(q, x) + ∂kj
k
μ(q, x) + ∂ki

k
μ(q, ρ(q, x), ∂jρ(q, x), . . .) = 0. (120)

Through ikμ we introduce dynamical mechanisms of diffusive type. These mechanisms are
internal so that, due to the homogeneity of spacetime, they are assumed to have no explicit
dependence on x. However, due to the structure of ikμ, we are also faced with the problem
of ensuring that, in the theory which we are developing, the isotropy of spacetime is not
destroyed. To this end, we note that, as in the case of an MSF, the transition from (87) to (120)
makes the relevant choice of a Lagrangian density which, at the classical level, is equivalent
to L(q, jμ(q, x)/ρ(q, x)). As a matter of fact, when (87) is satisfied, the Lagrangian density

L̃ = L
(

q,
jμ

ρ

)
+ D(ρ)aν jk

ν (q, x)

ρ(q, x)
∂kρ(q, x), (121)

where D(ρ) is a given function of ρ and aν is a given constant 4-vector, is equivalent to L.
Then, as a basis for a quantum theory of our system, we consider the action functional

Ĩ�+ [jμ, ρ, λσ ] =
∫

�+

dx dq

{[
L
(

q,
jμ

ρ

)
+ D(ρ)aν jk

ν

ρ
∂kρ

]
ρ

+ λν
(
∂νρ + ∂kj

k
ν + ∂ki

k
ν (q, ρ, ∂lρ, . . .)

)}
. (122)

Equations (121) and (122) are the generalization to our fields of equations (26) and (31) for
mechanical systems.

In the case of non-relativistic mechanical systems we were faced with the breaking of
time-reversal invariance, which is related to the choice of an arrow of the time axis. In the
case of fields, the introduction of a constant 4-vector aν , that is a privileged direction in the
Minkowski space, breaks the isotropy of the spacetime. At the classical level we have no
problem, since the additional term in equation (121) is ineffective. This is not the case, in
general, if we start from the action functional (122). However, the isotropy of the spacetime
can be still preserved by choosing appropriately the current ikμ. As a matter of fact, the request
for the spacetime isotropy allows us to determine completely ikμ, starting from the knowledge
of L̃. In fact, on the basis of this request, we deduce from (118), (121) and (122) that

ikν (q, ρ, ∂lρ, . . .) = aνη
kj (q)ρD(ρ)∂jρ, (123)

which is a generalization of (41).
Then we deduce from (118) and (122) the Lorentz invariant system of equations

∂νλ
ν + 1

2ηij ∂iλν∂jλ
ν + V (q) + aνa

ν
[

1
2ηij (ρD2(ρ))′∂iρ∂jρ − ∂i(η

ijρD2(ρ)∂jρ)
] = 0, (124)

∂μρ + ∂k(ρηkj ∂jλμ) = 0 ((μ = 0, 1, 2, 3), (q, x ∈ �+)), (125)

which appears as a straight-forward generalization to fields of the system (44) and (45),
obtained in the quantum theory of an MSF.

The system (124) and (125) can be derived directly from the action integral

A�+ [ρ, λμ] =
∫

�+

dx dq

[
−λν(q, x)∂νρ(q, x) + H(q, ∂λμ)ρ +

aνa
ν

2
ρD2(ρ)ηkl∂kρ∂lρ

]
,

(126)

where H is given by (119) (the variations of λμ must vanish on the boundary of �+).
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The last term in equation (126) has the same structure which we found in the case of an
MSF. So we can speak for fields of an extended classical domain or of a quantum domain,
according to the behavior of ρD2(ρ). We will focus our attention on the quantum domain.
This will be characterized, as in the case of mechanical systems (equation 51, g(ρ) = 0), by
requiring

aνa
νρD2(ρ) = (f/2)2

ρ
(f > 0), (127)

where f is constant. We have assumed in (127) that aνa
ν > 0, i.e. the currents ikν are timelike,

as can be expected on physical grounds.
In the quantum domain (124) becomes

∂νλ
ν +

1

2
ηij ∂iλν∂jλ

ν + V (q) +
f 2

4

(
1

2
ηij ∂iρ∂jρ

ρ2
− 1

ρ
∂i(η

ij ∂iρ)

)
= ∂νλ

ν +
1

2
ηij ∂iλν∂jλ

ν + V (q) − f 2

2

∂i(η
ij ∂jρ

1/2)

ρ1/2

= 0, (q, x) ∈ �+. (128)

The system (125) and (128) has a Lorentz invariant local hydrodynamic form, which
generalizes the Madelung hydrodynamic equations related to non-relativistic quantum
mechanics. The system is also invariant under the transformations involving spacetime
inversion

xμ → x ′μ = −xμ,

qi → q ′i = qi,

ρ(q, xμ) → ρ ′(q, x ′μ) = ρ(q, xμ),

λμ(q, xν) → λ′μ(q, x ′ν) = −λμ(q, xν).

(129)

We note that while, in the case of mechanical systems, the constant a of equation (51),
analogous to f , has the dimension of an action (as a matter of fact a = h̄, according to (68),
in the case of our fields the constant f has the dimension of a (spatial) density of an action,
as a consequence of our previous equations (126) and (127). This means that, by considering
h̄, f can be related to a fundamental quantity having the dimension of a spatial length.

We will see some consequences of the system (125) and (128), by assuming that, as in
some usual models of field theory (Klein–Gordon, λq4, . . .),

V (q) � 0, V (q) → +∞ for |q| → +∞. (130)

Furthermore, we will consider the random energy–momentum tensor TQ
σ
ν (q, x) in the quantum

case. This can be obtained by adding to the classical expression (114) the ‘quantum potential’
which appears in equation (128). Taking into account of (119), we have

TQ
σ
ν (q, x) = ηij (q)∂iλ

σ ∂jλν + gσ
ν

(
−f 2

2

∂i(η
ij ∂jρ

1/2)

ρ1/2
+ V (q) − 1

2
ηij ∂iλμ∂jλ

μ

)
, (131)

for (q, x) ∈ �+.
In particular, the random energy density εQ(q, x) and the random momentum densities

P Q
m (q, x) (m = 1, 2, 3) are given by

εQ(q, x) = TQ
0
0(q, x) = 1

2
ηij ∂iλ

0∂jλ
0 +

1

2
ηij ∂iλ

m∂jλ
m + V (q) − f 2

2

∂i(η
ij ∂jρ

1/2)

ρ1/2
, (132)

P Q
m (q, x) = TQ

0
m(q, x) = ηik∂kλ

0∂iλm (m = 1, 2, 3). (133)
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The simplest solutions of the system (125) and (128) can be obtained by considering the case

∂iλμ(q, x) = 0 (i = 1, 2, . . . , n;μ = 0, 1, 2, 3). (134)

In such a case, (125) is solved automatically by ρ(q, x) independent of x, that is ρ(q, x) =
ρ̃(q). Furthermore (128) (with ρ̃) necessarily requires that ∂νλ

ν is also independent of x, that
is, due to (134),

∂νλ
ν(q, x) = −w, (135)

where w is a constant. Then (128) becomes

− f 2

2

∂i(η
ij ∂j ρ̃

1/2)

ρ̃1/2
+ V (q) = w (136)

for q such that ρ̃(q) > 0.
This equation can be translated in a global form, by setting

ρ̃(q) = ψ2(q), (137)

so that we are led to replace (136) with(
−f 2

2
∂i(η

ij ∂jψ(q))

)
+ V (q)ψ(q) = wψ(q), (138)

that is a stationary Schrödinger equation with the constant f , instead of h̄.
Let us denote by wr the eigenvalues of the ‘Hamiltonian’ operator

Ĥ = −f 2

2
∂i(η

ij ∂j ·) + V (q).

We order them according to

0 � w0 < w1 < . . . .

We conclude that our system (125) and (128) admits as solutions invariant states, which are
associated with the eigenvalues wr of Ĥ . In an invariant state, corresponding to a particular
eigenvalue ws , the energy–momentum tensor is well defined, constant and given by

TQ
σ
ν = gσ

ν ws. (139)

Due to (139), we see that the existence of several non-degenerate vacuum states, each having
a constant finite energy density, is a consequence of our equations. We will call the state
corresponding to w0 the fundamental vacuum, while the other states associated with wr (r > 0)

may be called virtual vacua. The energy gap between the fundamental vacuum and a virtual
vacuum is infinite. We note that, in our approach, there is no substantial distinction between
the case of interacting fields and the non-interacting one. The fundamental vacuum also exists
for interacting fields. In the traditional approach, in the case of interacting fields, the existence
of the vacuum state must be, in some way, postulated. In the case of free fields, the traditional
approach gives an infinite zero point energy, but this is also infinite in any finite spatial volume,
while our w0 is finite.

The previous aspects of our approach may be relevant in connection with the dark energy
problem [28]. We note also that, as a consequence of (130), the eigenfunctions ψr(q)

associated with the invariant states are rapidly decreasing for |q| → +∞. Then we have that
the fluctuations

(qi − qi)(qj − qj ) =
∫

dq(qi − qi)(qj − qj )ψ
2
0 (q) (140)

(q̄i = ∫
dqqiψ

2
0 (q), the ψr(q) are supposed normalized) are finite. In the traditional approach,

if we consider, for example, the real Klein–Gordon field, the analogous quantity 〈0| q̂2(x) |0〉
(q̂ the operator valued Heisenberg field) is infinite.
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To further simplify our discussion, in the following we will limit ourselves to the case of
only one scalar field, assuming also that ηij (q) = η(q) = η (positive constant).

Now, as next steps, we will examine space-independent solutions and time-independent
solutions. The first type corresponds to solutions such that

∂

∂q
λm(q, x) = 0 (m = 1, 2, 3) (141)

but ∂λ0/∂q �= 0, in general.
With ρ(q, x) = ρ̃(q, x0), as a consequence of (141), the system (125) and (128) becomes

∂

∂x0
ρ̃(q, x0) +

1

η

∂

∂q

(
ρ̃

∂

∂q
λ0(q, x)

)
= 0 (142)

∂

∂x0
λ0(q, x) +

∂

∂xm
λm(q, x) +

1

2η

(
∂

∂q
λ0(q, x)

)2

+ V (q) − f 2

2η

1

ρ̃1/2

∂2ρ̃1/2

∂q2
= 0. (143)

From (142) we deduce λ0(q, x) = λ(q, x0), while (141) and (143) require that ∂
∂xm λm(q, x) =

f (x0). Writing

f (x0) = ∂

∂x0

∫ x0

f (x ′0) dx ′0 ≡ ∂

∂x0
�(x0),

we can absorb �(x0) within λ(q, x0), by considering λ̃(q, x0) = λ(q, x0) + �(x0). Then we
arrive at the equations

∂

∂x0
ρ̃(q, x0) +

1

η

∂

∂q

(
ρ̃

∂

∂q
λ̃(q, x0)

)
= 0, (142′)

∂

∂x0
λ̃(q, x0) +

1

2η

(
∂

∂q
λ̃(q, x0)

)2

+ V (q) − f 2

2η

1

ρ̃1/2

∂2ρ̃1/2

∂q2
= 0. (143′)

According to section 3, this system is the local form of the global linear Schrödinger equation

if
∂

∂x0
ψ̃(q, x0) = −f 2

2η

∂

∂q2
ψ̃(q, x0) + V (q)ψ̃(q, x0), (144)

where locally

ψ̃(q, x0) = ρ̃1/2(q, x0) exp

(
i

f
λ̃(q, x0)

)
.

The general solution to (144) is a linear superposition of the vacuum states. Due to (133)
and (141), we have for this solution, P Q

m (q, x) = 0 (m = 1, 2, 3), while the random energy
density is, in general, time dependent. On the other hand, its expectation value is a constant.
In fact, due to (143′), (133) gives

εQ(q, x0) = − ∂

∂x0
λ̃(q, x0) = i

f

2

1

ψ̃ψ̃∗

(
ψ̃∗ ∂

∂x0
ψ̃ − ψ̃

∂

∂x0
ψ̃∗
)

, (145)

so that ∫
dqεQ(q, x0)ρ̃(q, x0) = w̄ =

∫
dqψ̃∗(q, x0) if

∂

∂x0
ψ̃∗(q, x0). (146)

Now we discuss the very interesting case of time-independent solutions, by considering the
situation

∂λ0

∂q
(q, x) = 0, (147)
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while, in general, ∂
∂q

λm(q, x) �= 0. Also in this case P Q
m (q, x) = 0, but now there appear

important features of the random energy density.
As a consequence of (147) we have ρ(q, x) = ρ̂(q, �x), λm(q, x) = λ̂m(q, �x),

(�x =
(x1, x2, x3),m = 1, 2, 3

)
while, taking into account (128), we can write ∂

∂x0 λ
0(q, x) = g(�x).

By introducing hm(�x), such that ∂
∂xm hm(�x) = g(�x), we can absorb hm(�x) within λ̂m(q, �x), by

considering λ̂m(q, �x)+hm(�x), which we recall λ̂m(q, �x). Our system (125) and (128) becomes

∂

∂xm
ρ̂(q, �x) +

1

η

∂

∂q

(
ρ̂(q, �x)

∂

∂q
λ̂m(q, �x)

)
= 0 (m = 1, 2, 3), (148)

∂

∂xm
λ̂m(q, �x) − 1

2η

3∑
m=1

(
∂

∂q
λ̂m(q, �x)

)2

+ V (q) − f 2

2ηρ̂1/2

∂2

∂q2
ρ̂1/2(q, x̂) = 0. (149)

In order to see some basic aspect of this system, we fix the attention on its possible spherical
symmetric solutions. We start from the ansatz

λ̂m(q, �x) = −λ̂m(q, r)
xm

r
(r = |�x|,m = 1, 2, 3). (150)

We infer then from (148) ρ̂(q, �x) = ρ̂(q, r). The system (148) and (149) becomes

∂

∂r
ρ̂(q, r) +

1

η

∂

∂q

(
ρ̂(q, r)

∂λ̂(q, r)

∂q

)
= 0, (148′)

− ∂

∂r
λ̂(q, r) − 2

r
λ̂(q, r) − 1

2η

(
∂

∂q
λ̂(q, r)

)2

+ V (q) − f 2

2ηρ̂1/2(q, r)

∂2

∂q2
ρ̂1/2(q, r) = 0.

(149′)

This cannot be translated into a Schrödinger type equation, due to the minus sign in the
third term of (149′). However it is useful to introduce a transformation involving two real,
‘conjugate’, functions, as is done in diffusion theory [21]. We consider two real functions,
φ(q, r) and φ̃(q, r), such that

ρ(q, r) = φ̃(q, r)φ(q, r), (151)

λ̂(q, r) = 1

3
w0r − f

2
log

φ(q, r)

φ̃(q, r)
(when ρ > 0). (152)

In terms of φ(q, r) and φ̃(q, r), the system (148′) and (149′) becomes

−f
∂

∂r
φ(q, r) =

(
−f 2

2η

∂2

∂q2
+ V (q) − w0 +

f

r
log

φ(q, r)

φ̃(q, r)

)
φ(q, r), (153)

f
∂

∂r
φ̃(q, r) =

(
− f 2

2η

∂2

∂q2
+ V (q) − w0 +

f

r
log

φ(q, r)

φ̃(q, r)

)
φ̃(q, r). (154)

We are interested to bounded solutions of this system.
We note that, if we neglect the term (f/r) log

(
φ(q, r)

/
φ̃(q, r)

)
, the resulting equations

− f
∂

∂r
φ0(q, r) =

(
−f 2

2η

∂2

∂q2
+ V (q) − w0

)
φ0(q, r), (155)

f
∂

∂r
φ̃0(q, r) =

(
−f 2

2η

∂2

∂q2
+ V (q) − w0

)
φ̃0(q, r) (156)
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can be easily solved. Equation (155), which is a diffusion equation, admits non-negative
solutions, bounded for every r, having the structure

φ0(q, r) = c0ψ0(q) + c1ψ1(q) e− (w1−w0)

f
r + · · · + cnψn(q)e− (wn−w0)

f
r + · · · . (157)

On the other hand, (156) admits only one solution, which is bounded for large r, that is

φ̃0(q, r) = c̃0ψ0(q). (158)

Now we take c0 = c̃0( �= 0), so that, for large r,

f

r
log

φ0(q, r)

φ̃0(q, r)
= f

c1

c0

1

r

ψ1(q)

ψ0(q)
e− (w1−w0)

f
r + O

(
e− (w2−w0)

f
r

r

)
(159)

(assuming c1 �= 0). Due to (159), we can apply to the system (153) and (154), for large
r, the method of successive approximations, starting from φ0(q, r) and φ̃0(q, r). As a first
improvement we obtain

φ(q, r) 
 φ0(q, r) +
∫ +∞

r

φ0(q, r ′)
r ′ log

φ0(q, r ′)
φ̃0(q, r ′)

dr ′

= c0ψ0(q) + c1ψ1(q)

(
1 +

f

w1 − w0
· 1

r
− f 2

(w1 − w0)2

1

r2
+ · · ·

)
e− (w1−w0)

f
r + · · · ,

(160)

φ̃(q, r) 
 c0ψ0(q) − c1ψ1(q)

(
f

w1 − w0
· 1

r
− f 2

(w1 − w0)2

1

r2
+ · · ·

)
e− (w1−w0)

f
r + · · · .

(161)

The last dots represent terms of order exp(−2(w1−w0)r/f ) or exp(−(w2−w0)/f ), or smaller
than these. From (151), (160) and (161) we obtain that, for large r,

ρ(q, r) 
 ψ2
0 (q) + c1ψ0(q)ψ1(q)e− (w1−w0)

f
r + · · · , (162)

where we have taken c0 = +1, for a proper normalization. Since ψ0(q) is the state of the
fundamental vacuum, (162) describes a situation in which the physical system of our field is
static and confined within a region of the space, centered at the origin, of radius ∼f/(w1 −w0).
In such a situation we have that, besides the constant vacuum energy density, there is a random
energy density confined within a sphere of radius ∼f/(w1 − w0).

We obtain analogous results if c1 = 0 and c2, for example, different from zero. We
note that, due to the invariance of our equations as regards spatial translations, the previous
considerations on static solutions can be applied to a generic sphere with its center at an
arbitrary fixed point of the space. Then one can also consider several spheres, with centers
having distances larger than 2f/(w1 − w0). The above results seem to have some appealing
aspects. Their interpretation and a further analysis of our equations for specific models will
be given elsewhere. We note that in the case of mechanical systems, where we have only the
parameter t, the balance between two competitive diffusion processes makes the H-theorem
ineffective. On the other hand, as we have seen, in the case of fields this balance does not
prevent that a H-theorem be operative in the spacelike directions.

We add a brief comment on the dynamical behavior of our system (125) and (128). We
can also introduce for fields a quantity like the wavefunction of the mechanical systems.
However, in this case, the notion of wavefunction is associated with some covering of the
spacetime through a family of spacelike surfaces. Each such a covering determines a particular
wavefunction. To fix the ideas, let us consider the standard family of spacelike surfaces, each

26



J. Phys. A: Math. Theor. 42 (2009) 395401 M Villani

having a constant ‘time’ x0. To this family we can associate the wavefunction ψ(q, x0|�x),
parametrized by �x, given locally by

ψ(q, x0|�x) = ρ1/2(q, x0|�x) exp

(
i

f
λ0(q, x0|�x)

)
.

Due to section 3, the system (125) and (128) can be translated in the system

if
∂

∂x0
ψ(q, x0|�x) = −f 2

2
∂i(η

ij (q)∂jψ(q, x0|�x))

+

(
∂

∂xm
λm(q, x0|�x) +

1

2
ηij (q)∂iλm(q, x0|�x)∂jλ

m(q, x0|�x)

+ V (q)

)
ψ(q, x0|�x) = 0, (163)

∂

∂xm
(ψ̄ψ) + ∂k(ψ̄ψηkj ∂jλm) = 0 (m = 1, 2, 3). (164)

We have then for ψ(q, x0|�x) a Schrödinger equation, in which, besides the known function
V (q), there is also a ‘self’-potential, constrained by equations (164). As a result, even if we
introduce the above wavefunction, the linearity found for the mechanical system is lost in the
case of the fields.

However, it is possible that linearity requires a mathematical object more general than
ψ(q, x0|�x).

We conclude here with a few remarks. The previous approach for scalar fields is based on
a particular well-defined probabilistic scheme, which makes use of ordinary functions. On the
other hand, the standard approach of the quantum theory of fields is based on a more general
probabilistic scheme which is of functional type, but ill-defined. However the probabilistic
distributions of our approach could be considered or imposed, as the appropriate marginal
distributions of functional distributions which are not well defined.

Our approach requires some further development in order to treat the case of singular
Lagrangians. An analysis of the Dirac fields is particularly important in order to see how the
previous probabilistic scheme for scalar fields must be modified. A further important problem
is to investigate the application of our approach to the case of the gravitational field.
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